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Abstract

Background: Past case reports have indicated that lymphatic filariasis (LF) occurs in Zambia, but knowledge about its
geographical distribution and prevalence pattern, and the underlying potential environmental drivers, has been limited. As
a background for planning and implementation of control, a country-wide mapping survey was undertaken between 2003
and 2011. Here the mapping activities are outlined, the findings across the numerous survey sites are presented, and the
ecological requirements of the LF distribution are explored.

Methodology/Principal findings: Approximately 10,000 adult volunteers from 108 geo-referenced survey sites across
Zambia were examined for circulating filarial antigens (CFA) with rapid format ICT cards, and a map indicating the
distribution of CFA prevalences in Zambia was prepared. 78% of survey sites had CFA positive cases, with prevalences
ranging between 1% and 54%. Most positive survey sites had low prevalence, but six foci with more than 15% prevalence
were identified. The observed geographical variation in prevalence pattern was examined in more detail using a species
distribution modeling approach to explore environmental requirements for parasite presence, and to predict potential
suitable habitats over unsurveyed areas. Of note, areas associated with human modification of the landscape appeared to
play an important role for the general presence of LF, whereas temperature (measured as averaged seasonal land surface
temperature) seemed to be an important determinant of medium-high prevalence levels.

Conclusions/significance: LF was found to be surprisingly widespread in Zambia, although in most places with low
prevalence. The produced maps and the identified environmental correlates of LF infection will provide useful guidance for
planning and start-up of geographically targeted and cost-effective LF control in Zambia.
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Introduction

Little has been reported about lymphatic filariasis (LF) in

Zambia in the past. According to Buckley [1], local medical

reports from the 1930’s and 1940’s mentioned the recovery of

microfilariae (mf) of Wuchereria bancrofti from patients in Zambia,

but the history and movements of the infected individuals did not

rule out the possibility that infections had been acquired

elsewhere. These reports also mentioned that the condition of

elephantiasis was seen in Zambia and was commonly referred to as

‘‘Serenje leg’’ or ‘‘Feira leg’’ after its frequent occurrence in the

districts of Serenje and Feira (now Luangwa). In 1946, Buckley

identified a few cases of W. bancrofti microfilaraemia in hospital

patients in Lusaka, Ndola and Kasama, but none of the infected

individuals had been permanent residents in the country [1].

During a small night blood survey carried out in Luangwa valley,

Barclay [2] failed to identify W. bancrofti mf. In contrast, both

Buckley and Barclay reported high prevalences of infection with

another human filaria, Mansonella perstans, from their surveys.

The first definite autochthonous case of LF due to W. bancrofti in

Zambia was reported in 1975 by Hira [3,4] from a 25-year old

fisherman from Luangwa who presented with a tender swelling in

the right inguinal fossa and swollen ankles. Hira [4,5] afterwards

observed more patients with W. bancrofti mf in Zambia, including

cases acquired locally as well as cases that could have been

acquired in neighboring countries. More recently, W. bancrofti mf

were also reported from a 22-year old male from Southern

Province [6] and from a 49-year old female from Northern

Province who suffered from lower limb and vulval elephantiasis

[7].
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Although these observations suggested that LF was present and

transmitted in Zambia, the geographical distribution, extent and

prevalence pattern was largely unknown. In support of the World

Health Assembly resolution of 1997 to eliminate LF globally as a

public health problem, the government of Zambia therefore

undertook a large-scale LF mapping survey from 2003 to 2011.

Volunteers from all districts of the country were examined for

circulating filarial antigen (a marker of W. bancrofti adult worm

infection) according to guidelines from the World Health

Organization [8]. A first objective of this paper is to outline the

LF mapping survey activities and to empirically present the CFA

prevalences as observed at the numerous survey sites across

Zambia.

The presence of LF in an area is closely linked to the presence

and abundance of the vector mosquitoes and to the physical

requirements for parasite development within the vectors.

Environmental conditions related to suitable mosquito habitats

and to parasite growth and maturation in the vectors will often

strongly influence the observed geographical prevalence patterns

of LF [9,10]. The environmental drivers of LF distribution can be

explored through spatial modeling frameworks, and can in turn be

used to predict parasite presence at unsurveyed locations to further

guide control programmes. A second objective of this paper is to

take advantage of the large dataset available from the mapping

survey to identify the most important ecological correlates

associated with LF infection and to use these to produce maps

delineating the presence of LF at different prevalence levels in

Zambia.

Methods

Ethical statement
The field surveys were carried out as a part of the Zambian

Ministry of Health (MoH) Lymphatic Filariasis Control Pro-

gramme (2003–2005) and Programme for Integrated Control of

Neglected Tropical Diseases (2009–2011), and followed protocols

approved by the MoH for these programmes. The selected survey

populations were called for meetings during which they were given

detailed information about LF and the background, purpose and

implications of the survey. Individuals volunteering to be

examined provided oral informed consent under observation of

both project staff and village authorities (parents/guardians

consented on behalf of children below 15 years). Oral consent is

the traditional way for making agreements in the survey areas,

where written consent is unfamiliar and would cause suspicion and

refusal to participate.

Selection of survey sites
All 72 districts of Zambia existing at the start of the activity in

2003 (some have later been split and/or reorganized) were

targeted for LF mapping. Based on previous reports and hospital

records indicating possible cases of LF, 14 districts located in eight

provinces were first selected. These were Choma and Sinazongwe

(Southern Province), Mpongwe (Copperbelt Province), Kalabo,

Sesheke and Senanga (Western Province), Mbala and Chinsali

(Northern Province), Chama and Lundazi (Eastern Province),

Luangwa and Kafue (Lusaka Province), Serenje (Central Province)

and Zambezi (North-Western Province). In each of these districts,

three chiefdoms were selected to provide 100 volunteers each to be

tested for circulating filarial antigen (CFA) during 2003–2005.

In the remaining 58 districts, which were considered less likely

to have LF, one site was identified for the mapping exercise and

100 volunteers were targeted for CFA testing at each site during

2009–2011. Selection of the sites was facilitated by local health

personnel who led the survey team to areas where the population

of people was high enough to allow the required number of people

to be tested.

Field survey methodology
Members of the community were usually called to one central

place for the CFA test. A clinic or health centre was found to be

convenient for the purpose. Local health personnel were requested

to assist in the exercise, and their presence brought confidence and

trust, or less suspicion, from the community members. Geograph-

ical coordinates (longitude, latitude and elevation) were taken at

the survey sites using a hand held GPS receiver (eTrex Summit,

Garmin Corporation, Taiwan).

Following WHO guidelines [8,11], about 100 volunteers above

the age of 15 years were tested for CFA from each survey site. At

few sites, however, volunteers down to the age of 12 years were

allowed to participate due to low numbers coming forward for the

test. From each individual, 100 ml finger-prick blood was collected

using a heparinized capillary tube. The blood was applied to the

specimen pad of a rapid immunochromatographic test card (ICT

card, Binax Inc., USA). The result was read as positive or negative

ten minutes after the card was closed and was recorded on a

survey form together with the name, sex and age of the volunteer.

The data were entered in Excel, and later transferred to SPSS for

exploratory analysis.

Environmental data
Proxy environmental variables that may potentially influence

the distribution of the filarial parasite-host-mosquito system and

hence LF transmission [9] were extracted from freely accessible

Remote Sensing (RS) sources at spatial and temporal resolutions

shown in Table 1. Daytime land surface temperature (LST day),

night time land surface temperature (LST night) and the

Normalized Difference Vegetation Index (NDVI) were averaged

over the period 2001–2010 representing the climatic period of the

LF survey, according to Zambia’s three distinct climatic seasons: i)

cold/dry season (May–August), ii) hot/dry season (September–

November) and iii) hot/rainy season (December–April). Land

Author Summary

Lymphatic filariasis (LF) is a debilitating mosquito borne
parasitic infection which worldwide affects more than 120
million people. It is also widespread in Sub-Saharan Africa.
A World Health Organization coordinated Global Pro-
gramme to Eliminate LF has targeted LF for elimination as
a public health problem by the year 2020, with annual
mass drug administration (MDA) being the primary
measure for this endeavor. An important first step before
initiating MDA is the geographical mapping of infection in
order to delimit the target areas. Past case reports have
indicated that LF occurs in Zambia, but knowledge on its
distribution and prevalence has been limited. Here we
report on a country-wide survey carried out to map the
geographical distribution and prevalence pattern across
Zambia by screening adult volunteers for specific circulat-
ing filarial antigens (CFA). The CFA prevalences observed
at the numerous survey sites are presented and mapped
to give an indication of LF distribution in the country. The
observed geographical variation is furthermore examined
using a species distribution modeling approach to explore
environmental requirements for LF presence, and to
predict potential suitable habitats over unsurveyed areas.
The findings provide a firm background for planning and
start-up of LF control in Zambia.
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cover data contained 23 different land cover classes for Zambia,

which were re-classified into 7 categories; water bodies, wetlands,

forests, urban areas, shrublands, grasslands and croplands and re-

sampled to 1 km resolution. Rainfall estimates averaged over the

climatic normal period 1950–2000 were obtained from the

Worldclim project [12]. As a proxy for changes in the environment

due to anthropometric activities, the human influence index (HII)

[13] was used. A selection of maps of environmental predictors can

be seen in Figure S1 in the supplementary material.

The MODIS Reprojection Tool (USGS) was used to convert

the RS data to geo-referenced maps. Further processing of the

environmental data and distance calculation to the nearest water

bodies was carried out in ArcMap v. 10.0 (ESRI). Additional data

processing was performed in Revolution R Enterprise version 4.0

(Revolution Analytics; Palo Alto, USA) and Stata/SE 10

(StataCorp LP; College Station, USA). To elucidate potential

co-linearity among the environmental variables, a correlation

(Pearson’s test) matrix was constructed based on 10,000 randomly

extracted pixel values for each of the environmental predictors,

with variables above a threshold of r.0.75 not allowed to enter the

same model.

Modeling approach
To explore the ecological niche of the LF parasite-vector-host

biocoenose in Zambia, a species distribution modeling approach

was deployed. Species distribution models, also referred to as

ecological niche models [14], are commonly used to predict the

geographic range of a species by extracting associations between

point presence data and environmental data layers. The relation-

ships are then used to characterize the environmental require-

ments of the species, and finally to predict suitable habitats across

unsurveyed areas.

Here, species distribution modeling was implemented using the

MaxEnt approach [15], commonly used to explore and predict

environmental suitability for species, and has been shown to

perform well compared to other predictive algorithms in

comparative studies [16,17]. A brief explanation of MaxEnt

modeling is given in Methods S1 in the supplementary material.

Recently, the MaxEnt approach has also been applied in mapping

the Africa continent-wide current and potential future distribution

of LF [18] and schistososmiasis [19]. Specifically, MaxEnt, which

builds on the principles of maximum entropy, was chosen as it

allows a flexible modelling of the often complex non-linear

associations of infection presence with environmental variables

[16,18]. This flexibility can help facilitate an improved under-

standing of the ecological niche of a species, a prerequisite for a

more reliable mapping of the potential distribution [20–22].

Furthermore, the MaxEnt method does not require absence data

for the species being modeled; instead it takes advantage of the

background environmental data for the entire study area through

the background sampling procedure (see supporting information

for more details). An advantage of this is dealing with the risk of

including ‘false’ absence records in the model that can arise from

limitation of parasite detectability [23] and hence falsely indicate

non-suitability of a location. Finally, MaxEnt copes relatively well

with correlated variables (which environmental variables often are)

through the inbuilt method for regularization (L1-regularization)

known to be well-performing [24], making it possible to explore a

wider breath of potential environmental dependencies.

Two separate models were explored, based on different

prevalence value cut-offs: Model 1 was based on survey sites that

had at least 5% prevalence, and model 2 used survey sites with at

least 15% CFA prevalence as MaxEnt model input data. This was

done to get an indication of the drivers of both the general

distribution of endemic LF in Zambia (represented by the

distribution of at least 5% CFA prevalence), as well as the

distribution of medium to high levels of infection prevalence (at

least15% prevalence).

The spatial output of the MaxEnt model consists of a

continuous range of relative probabilities indicating, in the case

of this study, presence of the host–parasite system at the given

prevalence threshold. The default logistic model that gives

predicted estimates between 0 and 1 of the probability of infection

presence for each pixel in the map was used. It was chosen to fit

only linear, quadratic and product relationships, since more

complex models can be difficult to specify a priori based on

ecological theory [25]. Other parameterizations (maximum

number of iterations and convergence threshold) followed

recommendations by the model developers [15,26].

The importance of the environmental variables was evaluated

by comparing estimates of the relative contribution of environ-

mental factors to overall model training gain. The gain is a

Table 1. Properties and sources of the remotely sensed and other environmental predictors used to model LF prevalence in
Zambia.

Data type Spatial resolution Time period Source

Day land surface temperature (LST day) 161 km 2001–2010 MODIS/Terra1

Night land surface temperature (LST night) 161 km 2001–2010 MODIS/Terra1

Normalized Difference vegetation Index (NDVI) 2506250 m 2001–2010 MODIS/Terra1

Land cover 161 km 2005 GLCN2

Water bodies (lakes and wetlands) 161 km 2005 GLCN2

Rainfall 161 km 1950–2000 WorldClim3

Altitude (DEM) 161 km - USGS4

Human Influence Index (HII) 161 km - SEDAC5

1Moderate Resolution Imaging Spectroradiometer (MODIS); available at https://lpdaac.usgs.gov/ (accessed February 2012).
2Global Land Cover Network (GLCN); available at http://www.glcn.org/databases/lc_gc-africa_en.jsp (accessed February 2012).
3World Clim - Global Climate data, available at http://www.worldclim.org/ (accessed February 2012).
4United States Geological Services (USGS) Digital Elevation Model (DEM) available at: http://eros.usgs.gov/ (accessed February 2012).
5Socioeconomic Data and Applications Center, available at http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic. (accessed
February 2012).
doi:10.1371/journal.pntd.0002714.t001
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measure closely related to deviance, the goodness of fit measure

used in generalized additive and generalized linear models [15].

Furthermore, the explanatory information in each variable when

used in isolation and the information lost when omitted from the

model was quantified using a jackknife cross-evaluation procedure.

The continuous probability maps were furthermore converted

into binary presence/absence maps of the LF host–parasite

system, using the threshold indicating maximum training sensitiv-

ity plus specificity (i.e., that threshold which maximizes the sum of

sensitivity and specificity for the training data). This is one of 11

thresholds calculated by MaxEnt, and is in considered one of the

more robust of several standard thresholds for converting

continuous probability surface to presence/absence surface

[27,28]. This distribution was then used to define the spatial

limits for each of the two categories ($5% and $15%) of infection

prevalence.

Model evaluation
A validation procedure was implemented by randomly dividing

the occurrence data in training and test data sets (based on a 80–

20% splitting of the data set). The evaluation focused on predictive

performance at sites. Three statistics were applied; 1) the Area

under the receiver operating characteristic Curve (AUC), 2)

correlation (COR) and 3) sensitivity and specificity, to assess the

agreement between the prevalence recorded at sites and the

predictions.

AUC ranges from 0 to 1, where an AUC#0.5 indicates that

model performance is equal to or worse than that of a random

prediction while an AUC above 0.75 is normally considered useful

[17]. COR was calculated as the Pearson correlation coefficient

between the full range of prevalence values in the test dataset

(including negative sites) and the model logistic prediction [16,26].

Sensitivity was calculated as the proportion of true positives/

negatives (‘presence/absence’ points) falling within the predicted

presence/absence area, and specificity as the proportion of true

negatives falling within the predicted absence area.

Results

Study sites, study population and CFA prevalences
A total of 10193 volunteers from 108 survey sites located in all

72 districts and 9 provinces of Zambia were surveyed for CFA.

Among these, 9964 (97.8%) had a valid test card result and

comprise the study population of examined individuals analyzed in

this study. An overview of the survey sites, and the number,

positivity for CFA, age and sex of the study population, is

presented in Table 2. A list of geographical coordinates for the

study sites is given in Table S1 in the supplementary material.

Most survey sites (83 or 76.9%) had more than 90 examined

individuals, whereas 14 sites (13.0%) had less than 70. The highest

mean number of examined individuals per site (100.9) was in

Copperbelt Province, whereas the lowest (55.9) was in Luapula

Province. The age of examined individuals ranged from 12 to 96

years. The mean age for the survey sites ranged from 21.2 to 46.0

years, and the overall mean age was 34.0 years. Many more

females than males were examined (6376 vs. 3585), and the great

majority of sites had more examined females than males (94 or

87.0%).

CFA positive cases were identified at 84 (77.8%) of the survey

sites, where the prevalence ranged from 1.0 to 53.9%. The

prevalence was $5% at 49 sites and $15% at 14 sites. The highest

mean CFA prevalences were seen in Western (19.0%) and Lusaka

(18.8%) provinces, whereas the lowest were in Copperbelt (3.4%)

and North-Western (2.5%) provinces. The overall mean CFA

prevalence for all examined sites was 7.4%.

A graphical presentation of the measured CFA prevalence at

the different survey sites is shown in Figure 1, which thus gives an

overview of the distribution pattern of LF in Zambia. All provinces

had sites with a low CFA prevalence below 15%. However, six foci

with CFA prevalences above 15% are clearly identified from the

figure. Named by the district of location, these are the Kalabo and

Senanga focus (both in Western Province), the Luangwa and

Kafue focus (both in Lusaka Province), the Serenje focus (Central

Province) and the Lundazi focus (Eastern Province). The first four

of these foci had sites with particularly high CFA prevalences of .

25%, and among these the Kalabo focus had sites with .50%

CFA prevalence.

Model outputs
The importance of the environmental determinants of LF

distribution in Zambia, as measured by their contribution to

overall model training gain, varied substantially between the

model based on $5% and the model based on $15% CFA

prevalence data. The relative contribution of the 7 most important

(of a total of 16) of the environmental predictor variables is given

in Table 3. Between them, these 7 predictors were ranked in the

top three of at least one of the two models. Overall the most

important predictor was land cover, which in particular for model

1 (CFA$5%) contributed to a significant part of model gain. In

particular croplands and grasslands were associated with high

probabilities of presence of infection, whereas forested areas were

predicted as the least suitable of the land cover classes. The second

most important predictor variable was day land surface temper-

ature (hot/dry season). It was especially important in the CFA$

15% model, where it contributed 22.4% of total training gain,

which is in accordance with the jackknife procedure that indicated

that it was also the variable with the highest model gain when used

in isolation. The human influence index, HII, was also an

important predictor in model 1 where it contributed 20.9% of total

training gain, whereas it did not play a significant role in model 2,

contributing only 1.5% of total training gain.

The least important environmental factors for both models, as

judged from the total gain, were rainfall and night time LST. The

environmental variable that decreased the gain most when omitted

was the distance to surface water bodies, which therefore appeared

to have the most information not present in the other variables.

The functional relationship between the most important

continuous predictor variables and the predicted probability of

presence of either $5% or $15% CFA is depicted in the response

curves in Figure 2. Each curve is made by generating a MaxEnt

model using only the corresponding predictor variable, disregard-

ing all other variables.

Maps of the MaxEnt predicted distributions of low ($5% CFA)

and medium-high LF infection prevalence ($15% CFA) categories

are presented in Figure 3a and 3b respectively. The heat map

values represent the probabilities of ‘presence’ of each prevalence

category, with relative probability values ranging from 0 (green

colors) to 1 (red colors). The scale is defined for each map so that

red areas correspond to ‘presence areas’ as defined by the

threshold indicating maximum training sensitivity plus specificity.

Both maps indicate that LF infection potentially is present

across Zambia with a somewhat patchy distribution, but with

particularly high probability of presence in the floodplains of

Western Province, the western part of North-western Province, the

flood plain areas surrounding Zambezi River and its tributaries,

the areas along Lake Kariba, the Kafue plains and the low plateau

and river floodplains of Luangwa River. The most notable
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Table 2. Overview of study sites, and the numbers, positivity for circulating filarial antigens (CFA), ages and gender ratios of
examined volunteers.

Site
no. Province District Village/Chiefdom/Site

Altitude
in m Volunteers examined for CFA

No.
Examined

No. positive
(%)

Mean age
(range) in years

Female:male
ratio

1 Central Mkushi Masansa 1267 102 3 (2.9) 32.1 (15–71) 1.37

2 Kapiri Mposhi Tazara 1228 101 6 (5.9) 36.6 (16–65) 2.74

3 Chibombo Chibombo 1068 100 3 (3.0) 42.2 (15–77) 0.96

4 Kabwe Kasanda 1086 101 9 (8.9) 30.9 (16–60) 2.26

5 Mumbwa Keezwa 980 102 8 (7.8) 26.1 (15–95) 1.00

6 Serenje Mulilima 1464 95 0 (0.0) 26.0 (15–60) 8.50

7 Serenje Muchinka 1430 100 16 (16.0) 37.4 (15–86) 0.85

8 Serenje Mapepala 1160 101 20 (19.8) 29.9 (15–67) 1.97

9 Copperbelt Mpongwe Mwanankonesha/Lesa 1250 98 0 (0.0) 35.2 (15–83) 1.39

10 Mpongwe Machiya 1149 102 0 (0.0) 30.8 (15–68) 1.04

11 Mpongwe Mwinuna 1160 101 0 (0.0) 33.5 (15–70) 2.48

12 Masaiti Fiwale Mission 1275 103 6 (5.8) 40.1 (15–86) 1.24

13 Ndola Chipulukusu 1242 102 3 (2.9) 34.1 (15–70) 5.00

14 Luanshya Mpatamatwe 1255 100 8 (8.0) 28.3 (15–68) 1.70

15 Kitwe Buchi 1218 101 2 (2.0) 31.1 (16–73) 4.32

16 Chililabombwe Kawama 1323 100 1 (1.0) 27.7 (15–62) 6.69

17 Lufwanyama St. Joseph Mission 1220 100 10 (10.0) 30.9 (17–79) 1.22

18 Kalulushi Chibuluma 1284 100 5 (5.0) 38.9 (15–88) 1.38

19 Mufulira Lwansobe 1287 102 4 (3.9) 43.9 (15–85) 2.92

20 Chingoloa Chawama 1362 102 2 (2.0) 34.9 (15–83) 2.13

21 Eastern Chadiza Nsadzu 296 101 0 (0.0) 23.7 (14–70) 1.15

22 Chipata Madzimoyo 921 99 1 (1.0) 25.2 (15–75) 2.54

23 Mambwe Masumba 557 101 2 (2.0) 33.3 (15–95) 2.26

24 Katete Katete Urban 1025 101 1 (1.0) 33.0 (15–78) 1.02

25 Nyimba Chipembe 857 105 0 (0.0) 33.3 (15–76) 2.62

26 Petauke Mumba 989 102 1 (1.0) 28.5 (15–66) 6.85

27 Lundazi Zumwanda 1133 103 7 (6.8) 34.0 (15–85) 1.34

28 Lundazi Nkhanga 1092 102 11 (10.8) 37.0 (15–85) 1.17

29 Lundazi Mwase-Lundazi 1215 106 17 (16.0) 39.0 (18–82) 1.26

30 Chama Chipundu-Kambombo 733 81 0 (0.0) 32.5 (16–61) 1.89

31 Chama Mbubeni-Tembwe 676 80 0 (0.0) 32.4 (18–74) 1.35

32 Chama Chitunda-Chikwa 685 76 0 (0.0) 31.1 (19–73) 4.07

33 Luapula Chiengi Puta 970 38 0 (0.0) 32.8 (18–73) 1.92

34 Nchelenge Nchelenge 924 99 0 (0.0) 29.9 (15–76) 4.50

35 Kawambwa Mukamba 1201 45 1 (2.2) 30.6 (15–65) 1.65

36 Mwense Lubunda 928 50 1 (2.0) 44.2 (18–75) 1.50

37 Mwense Musangu 963 33 0 (0.0) 38.1 (17–68) 3.71

38 Mwense Lukwesa 954 18 0 (0.0) 45.8 (24–79) 2.00

39 Mansa Mabumba 1244 54 0 (0.0) 44.6 (16–82) 1.70

40 Samfya Mandubi 1148 60 0 (0.0) 38.7 (20–71) 3.00

41 Milenge Milenge East 7* 1196 106 22 (20.8) 41.2 (15–70) 1.36

42 Lusaka Lusaka Chipata 1249 103 0 (0.0) 30.9 (14–68) 5.87

43 Chongwe Rufunsa 910 102 4 (3.9) 27.3 (15–78) 2.19

44 Kafue Chanyanya Harbour 977 100 30 (30.0) 36.4 (15–91) 1.08
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Table 2. Cont.

Site
no. Province District Village/Chiefdom/Site

Altitude
in m Volunteers examined for CFA

No.
Examined

No. positive
(%)

Mean age
(range) in years

Female:male
ratio

45 Kafue Kanjawa 1211 100 14 (14.0) 36.0 (15–96) 1.70

46 Kafue Tukunta 1153 100 12 (12.0) 31.1 (16–84) 6.14

47 Luangwa Kavalamanja-Mphuka 377 91 33 (36.3) 29.9 (15–60) 1.39

48 Luangwa Janeiro-Mphuka 349 100 33 (33.0) 27.4 (15–70) 1.44

49 Luangwa Chitope-Mburuma 371 76 19 (25.0) 34.4 (16–69) 1.92

50 Northern Luwingu Nsombo 1175 100 11 (11.0) 34.3 (15–78) 1.70

51 Chilubi Chaba 1189 100 11 (11.0) 36.8 (15–89) 1.13

52 Kaputa Kalaba 944 104 6 (5.8) 26.2 (15–72) 0.79

53 Mporokoso Chishamwanba 1424 100 5 (5.0) 28.6 (15–75) 1.22

54 Mpulungu Mpulungu 778 102 10 (9.8) 30.7 (14–96) 3.25

55 Isoka Kampumbu 770 101 8 (7.9) 36.9 (15–77) 0.98

56 Nakonde Shemu 1341 98 7 (7.1) 34.4 (17–82) 0.56

57 Mungwi Mumba 1212 101 6 (5.9) 33.7 (15–70) 1.59

58 Kasama Munkonge 1255 99 6 (6.1) 32.2 (15–70) 1.15

59 Mpika Nabwalya 549 100 3 (3.0) 22.0 (15–70) 0.75

60 Mpika Mpepo 1257 92 3 (3.3) 23.6 (41–68) 0.96

61 Mbala Chilundumusi 1383 101 0 (0.0) 29.9 (15–82) 1.30

62 Mbala Mwamba 1567 99 0 (0.0) 27.6 (15–77) 0.98

63 Mbala Chiungu-Zombe 1257 94 1 (1.1) 36.5 (15–87) 1.85

64 Chinsali Ilondola-Nkula 1342 93 0 (0.0) 41.9 (13–85) 0.94

65 Chinsali Nkweto 1292 89 0 (0.0) 26.8 (14–68) 1.78

66 Chinsali Mulanga** 1268 73 0 (0.0) 21.2 (14–76) 0.74

67 North-Western Mwinilunga Kalene Mission 1195 100 1 (1.0) 39.0 (15–82) 1.27

68 Solwezi Solwezi Urban 1336 100 2 (2.0) 30.7 (15–67) 1.86

69 Solwezi Lumwana East 1273 106 3 (2.8) 33.5 (15–80) 2.53

70 Kasempa Kasempa Urban 1220 101 5 (5.0) 32.8 (12–80) 1.89

71 Mufumbwe Boma 1159 106 5 (4.7) 30.2 (15–72) 1.47

72 Kabompo Kapompo 1127 102 2 (2.0) 46.0 (17–89) 1.00

73 Chavuma Chiyeke 1075 103 5 (4.9) 36.8 (15–89) 1.15

74 Zambezi Kucheka 1058 59 0 (0.0) 41.2 (15–95) 0.90

75 Zambezi Mukandankunda*** 1080 148 1 (0.7) 37.5 (15–88) 1.48

76 Zambezi Chinyingi-Ndungu 1050 67 1 (1.5) 36.9 (15–75) 2.19

77 Southern Livingstone Lubuyu 864 100 2 (2.0) 33.5 (15–64) 4.26

78 Kazungula Makunka 1036 99 6 (6.1) 31.6 (15–68) 1.68

79 Kalomo Namiyanga 1252 100 4 (4.0) 32.5 (21–80) 2.57

80 Monze Njola Mwanza 1026 99 6 (6.1) 32 9 (15–68) 11.4

81 Itezhitezhi Itezhitezhi Urban 942 98 14 (14.3) 30.7 (15–61) 7.91

82 Gweembe Munyumbwe 618 105 9 (8.6) 27.6 (14–60) 2.28

83 Siavonga Siavonga District 510 101 3 (3.0) 31.3 (15–63) 1.59

84 Namwala Muchila 1071 100 5 (5.0) 37.9 (15–71) 3.76

85 Namwala Chitongo 309 64 9 (14.1) 29.6 (15–60) 1.29

86 Mazabuka Cheeba 301 102 1 (1.0) 36.9 (15–87) 1.76

87 Choma Simachenga-Singani 1289 99 1 (1.0) 32.5 (15–75) 2.96

88 Choma Macha 1155 101 0 (0.0) 36.2 (15–73) 1.35

89 Choma Moyo 1002 126 0 (0.0) 42.2 (16–83) 1.42
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difference between the two maps is the much more confined

presence areas predicted for the $15% prevalence category in the

Northern and Luapula Provinces as compared to the relatively

large areas predicted as potential $5% prevalence presence in

these provinces.

Superimposing the binary presence/absence maps to produce

one risk map (Figure 4) furthermore highlighted differences and

similarities between the two model predictions. The orange color

in this figure represents areas where only model 1 (CFA$5%)

predicts presence and the dark-brown color shows where model 2

(CFA$15%) predicts presence (nested within model 1 predicted

presence areas). Finally, the light yellow color in the map

delineates areas where none of the models predict presence, i.e.

areas expected to have no or less than 5% infection prevalence.

Model performance
Measures of model accuracy are presented in Table 3. AUC

values ranged from 0.866 to 0.892, indicating that the ‘suitability’

for LF infection was correctly ranked for 87–89% of the evaluated

map pixels.

The correlation (COR) between the MaxEnt model predicted

suitability and the observed full range of CFA prevalences at all

108 localities ranged from 0.117–0.355, and increased with CFA

prevalence cut-off level (Table 3). This indicates that MaxEnt

modeled the ‘true’ prevalence pattern of LF infection in Zambia

better when using medium to high prevalence localities only

(model 2), rather than the more general presence of infection ($

5%) which showed a non-significant correlation to the observed

CFA prevalences at survey sites. Based on the presence/absence

map, model 2 also had the best predictive positive and negative

performance as evaluated by its sensitivity (76.9%) and specificity

(64.5%) meaning that 76.9% of the $15% prevalence data points

were correctly identified within the predicted ‘$15% prevalence

zone’, and that 64.5% of the true negatives were correctly

identified within the ‘,15% prevalence zone’.

Discussion

The field survey reported in this paper was the first country-

wide screening for LF in Zambia. More than 10,000 people from

108 sites located in all 72 districts and 9 provinces were examined

for CFA during an 8-year period from 2003 to 2011. The survey

surprisingly indicated that LF is widely distributed in the country,

with 78% of sites having CFA positive cases. In many of the sites

prevalences were rather low, but a few identified foci had

prevalences above 25%. The highest prevalences (above 50%)

were recorded from Kalabo District in Western Province. The

results from the survey, in particular the identification of the high

endemicity foci, provide an important background for planning

and initial implementation of LF control measures in Zambia.

Table 2. Cont.

Site
no. Province District Village/Chiefdom/Site

Altitude
in m Volunteers examined for CFA

No.
Examined

No. positive
(%)

Mean age
(range) in years

Female:male
ratio

90 Sinazongwe Sinazeze 625 85 5 (5.9) 39.4 (16–77) 1.43

91 Sinazongwe Sinazongwe 492 98 5 (5.1) 40.2 (18–83) 2.27

92 Sinazongwe Mwemba 497 93 0 (0.0) 36.2 (17–70) 2.32

93 Western Kaoma Mangango Mission 1127 39 1 (2.6) 37.2 (15–70) 2.55

94 Kaoma Mayukwayukwa 1 1068 64 9 (14.1) 34.5 (15–79) 1.86

95 Lukulu Silembe**** 1058 98 2 (2.0) 41.8 (15–89) 1.23

96 Mongu Nalikwanda***** 1049 51 1 (2.0) 42.9 (17–77) 0.82

97 Shangombo Nangweshi 1022 83 8 (9.6) 33.8 (15–75) 1.44

98 Mongu Sefula–Namutwe 1034 49 3 (6.1) 35.5 (17–60) 1.88

99 Kalabo Maunyambo 1020 85 6 (7.1) 43.9 (13–81) 1.30

100 Sesheke Mulundamo 952 100 6 (6.0) 41.5 (16–85) 2.45

101 Sesheke Malabwe 929 99 1 (1.0) 39.7 (16–77) 4.67

102 Sesheke Sazibilo 947 99 7 (7.1) 34.3 (16–86) 1.30

103 Senanga Itufa-Lityamba 1024 94 28 (29.8) 34.7 (15–80) 2.24

104 Senanga/ShangomboKanja/Nangweshi 995 100 24 (24.0) 40.8 (15–78) 3.17

105 Senanga Kaunga Lueti 1013 102 23 (22.5) 34.6 (16–78) 1.76

106 Kalabo Nalubutu Sishekanu 1041 76 41 (53.9) 34.9 (15–79) 4.43

107 Kalabo Kaonga Sikongo 1014 81 41 (50.6) 38.7 (15–80) 2.38

108 Kalabo Lwandamo Lutwi 1046 91 48 (52.7) 40.0 (16–85) 2.64

All - - - - 9964 736 (7.4) 34.0 (12–96) 1.78

Only volunteers with a valid CFA test result are included (tests of 229 volunteers produced invalid results).
* Milenge East 7 & Changwe Lungo.
** Mulanga-Chibesakunda.
*** Mukandankunda-Ishindi.
**** Silembe Kalambwe-Imenda.
***** Nalikwanda–Singonda.
doi:10.1371/journal.pntd.0002714.t002
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Females were much more eager to participate in the CFA

screening than males. Overall, 64% of those examined were

females, and at most survey sites (87%) more female than male

volunteers were examined. It is well known that the LF prevalence

in most endemic areas is higher in adult males than adult females

[28–30]. The recorded prevalences from the Zambian survey may

therefore be an underestimation of the true values, especially at

sites where the female to male ratio was high. Similarly the

potential sampling biases introduced by involving local health

personnel in the selection of study sites (oversampling of suspected

endemic areas) and by examination of volunteers (non-random

sampling of study individuals) should be kept in mind when

interpreting findings. These are, however, practical arrangements

that are often difficult to avoid during large-scale mapping surveys,

and which are also recognized in the WHO guidelines for

mapping surveys [8,11].

Figure 1. Map of Zambia showing survey sites and prevalences of CFA positivity.
doi:10.1371/journal.pntd.0002714.g001

Table 3. Summary statistics of jackknife test of environmental variable importance, evaluation measures, and maximum training
sensitivity plus specificity threshold results for MaxEnt model 1 (sites with CFA$5%) and model 2 (sites with CFA prevalence $

15%).

Model 1 (CFA$5%) Model 2 (CFA$15%)

Variable contribution to model training gain (%)

Land cover 34.3 23.8

Human Influence Index (HII) 20.9 1.5

LSTday* (hot-dry season) 19.6 22.4

Distance to water bodies 6.1 11.7

NDVI** (hot-dry season) 5.4 1.0

LSTday (rainy season) 2.4 13.7

Altitude (DEM) 0.2 9.1

Model evaluation measures

AUC (SD)*** 0.866 (0.045) 0.892 (0.074)

CORprev**** (p-value) 0.117 (0.234) 0.355 (,0.001)

Threshold dependent sensitivity 68.8% 76.9%

Threshold dependent specificity 46.6% 64.5%

Threshold cut-off probability value 0.412 0.465

Only the 7 predictors that were ranked in the top three of at least one of the two models are included. The top three predictors for each model are highlighted in bold.
*LST; Land Surface Temperature.
**NDVI; Normalized Difference vegetation Index.
***AUC; the area under the Receiver Operating Characteristic curve (and standard deviation).
**** CORprev is the Pearsons product moment correlation between model logistic probability and the measured CFA prevalence at survey sites.
doi:10.1371/journal.pntd.0002714.t003
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Some of the identified high prevalence foci were located near

national borders, and it is possible these may be attached to foci in

neighboring countries. Thus, the river Zambezi separates the

Luangwa focus from areas of Zimbabwe where cases of LF have

previously been documented [31,32], and LF moreover appears to

be common in the nearby Tete Province of Mozambique [33].

The Lundazi focus is close to Malawi, which also has widespread

occurrence of LF although the prevalence in the western part of

the country tends to be low [34]. Whether the Kalabo and

Senanga foci extend into nearby Angola, or the Serenje focus

extends into nearby Democratic Republic of Congo, is unclear as

current information about the geographical distribution of LF in

these neighboring countries is limited [33,35]. Infections with

another species of filarial parasite, M. perstans, have also been

reported from humans in Zambia [1,2], but these do not seem to

cross react in the CFA tests for W. bancrofti [36].

Knowledge about the vectors of LF in Zambia is limited, but

recent surveys indicate that, as in most other parts of Sub-Saharan

Africa, An. funestus and An. gambiae are the principal LF vectors [37;

ST Shawa personal communication]. These species are also the

main malaria vectors in Sub-Saharan Africa. As Zambia is one of

the countries in this region that has received relatively high bed net

Figure 2. Response curves illustrating the relationship of MaxEnt predicted probability of occurrence to environmental variables.
The values shown on the y-axis is the predicted probability of suitable conditions, as given by the logistic output format, with only the particular
predictor variable used to develop the MaxEnt model. (a) The figure shows the relationship between the Human Influence Index and the predicted
probability of occurrence of CFA$5% (model 1), (b) depicts the relationship between day-time land surface temperature in the rainy season (LSTday
(rainy)) and the probability of LF as modeled by model 2 (CFA$15%), (c) shows the relationships between day-time land surface temperature in the
hot-dry season (LSTnight (hot-dry) and the probability of LF occurrence as modeled by model 1 and 2, respectively, and (d) shows the relationship
between the distance to nearest surface water bodies and the probability of occurrence of LF as modeled by model 1 and model 2, respectively.
doi:10.1371/journal.pntd.0002714.g002
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Figure 3. Maps of the MaxEnt predicted distributions of CFA prevalence categories. (A) The heatmap values represent the relative
probabilities of presence of LF with at least 5%, CFA prevalence (model 1). (B) The heatmap represent the predicted relative probability of presence of
LF with at least 15% CFA prevalence (model 2).
doi:10.1371/journal.pntd.0002714.g003

Mapping Lymphatic Filariasis in Zambia

PLOS Neglected Tropical Diseases | www.plosntds.org 10 February 2014 | Volume 8 | Issue 2 | e2714



coverage and coverage of indoor residual spraying for malaria

control in recent years [38], it cannot be excluded that these

activities to some extent could have impacted the LF prevalences

in some of the studied areas.

Identifying the ecological correlates of LF presence and

exploring its environmental distribution in Zambia is an important

step required to produce accurate and reliable maps for

geographically targeted and cost-effective intervention. Here a

machine learning approach, that allows flexible modeling and

exploration of potential complex associations between infection

presence and environmental predictor variables in geographical

space, was applied. This approach allowed visualization of the

‘ecological space’ for occurrence of LF at different levels of

infection prevalence, and provided new insights as to how

environmental variables may functionally influence the LF

parasite-vector-host bioescone in Zambia.

Of note it was found that the general distribution of LF ($5%)

in Zambia appeared to be associated with human modified land

areas, as indicated by the strong association with croplands and

the Human Influence Index. These areas may sustain habitat-

types that are particularly suitable breeding areas for the main

vector mosquito species in Zambia (Anopheles gambiae and A.

funestus), and it is biological intuitive that the parasite is found in

areas where the human host resides. It may, however, also partly

be a reflection of a sampling bias towards (more densely) populated

areas. Climatic factors on the other hand, were not important in

model 1, suggesting that climate per se may play a smaller role in

determining the general distribution of LF in Zambia.

The distribution of medium to high levels of LF (model 2) on the

other hand, was less associated with human influenced predictors

(only 1.9% HII) and seemed to be more related to climatic factors,

with daytime temperature variables being equally important to land

cover as measured by contribution to model training gain (Table 3)

The functional relationship with day time temperature was positive

(Figure 2b–c), reaching a plateaux (maximum) at around 31uC in

the rainy season and with a lower limit at around 22uC (rainy and

hot/dry season). This corresponds well with the findings from

experimental studies showing that only few microfilariae will

penetrate the gut of the mosquito at temperatures below 22uC
and only little or no development occurs [39–42]. The rate of

development then increases with rising temperatures, becoming

optimal around 30uC [39]. Hereafter, the yield of infective larvae

decreases due to increased filarial larval mortality [42,43] and lower

survival rate of infective mosquitoes [41]. It also corresponds well to

the findings from continental scale studies of the distribution of LF

in Africa. For example Lindsay and Thomas [9], who found that the

temperatures at sites with presence of microfilaraemic individuals

across Africa lie within the range between 22 to 30 degrees, and

Slater and Michael [18] who found that the most suitable range for

LF transmission across Africa lies between 25uC and 32.5uC (mean

maximum temperature).

Besides suitable temperature ranges, water availability for

mosquito breeding is a prerequisite for LF transmission. Rainfall

however, did not contribute much to either models, and hence

does not seem to be an important limiting factor for the

distribution of LF in Zambia. However, distance from nearest

permanent surface water body had the most information not

present in the other variables in the models, and hence (together

with land cover and temperature) appear to be an important

determinant of LF distribution in Zambia.

Similar environmental information as applied in the current

study was recently used to predict the distribution and risk of

malaria across Zambia [44], although applying a different

modeling approach (Bayesian geostatistical modeling). Given that

LF in Zambia is transmitted by the same vector mosquito species

with the same ecological requirements as malaria, a certain

similarity between the distributions of the two infections is to be

expected. A visual comparison of the two maps indicate areas of

co-inciding high risk in the low-lying floodplains and valleys

surrounding Luangwa River, on the border between Northern and

Eastern Provinces and in eastern parts of Lusaka Province. An

area of medium-high risk malaria is also predicted in the

Figure 4. Map resulting from the overlay of the thresholded versions of the maps in Figure 4. The map depicts areas of predicted
presence of $15% CFA prevalence (brown), $5% CFA prevalence (orange+brown) and areas where no or ,5% CFA is predicted to be present (light
yellow).
doi:10.1371/journal.pntd.0002714.g004
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floodplain areas in Western Province (Zambezi River floodplains),

although this is much more confined than that of the relatively

large area predicted for LF in this part of the country. The biggest

difference between the maps is the general high malaria risk

predicted in large parts of Northern Province, where LF (at

medium-high prevalence levels) is predicted to be less widespread.

Similar patterns of contrasting spatial distributions of LF and

malaria has also been observed in Uganda [45] and in some West

African countries [10].

The present study has provided new and unexpected knowledge

indicating widespread occurrence of LF in Zambia. It has moreover

outlined its approximate geographical distribution, pointed to

specific areas with high prevalence, and identified important

environmental factors affecting its presence at various prevalence

levels. This information will all be useful for planning and

implementation of control of LF as a public health problem. In

fact, the Ministry of Health in Zambia initiated mass drug

administration in Kalabo District in late 2012, based on the findings

from the field surveys reported in this paper, and it is planned to

scale up this activity across the country in the next few years.

Although the applied modeling approach has proven useful to

explore ecological correlates of LF and visualize environmentally

suitable areas across unsurveyed areas in Zambia, it is important to

stress that the resultant maps do not depict predicted prevalence:

they show the relative probabilities of presence of the parasite-

vector-host biocoenose. Given the relatively low correlation

between these values and actual LF prevalence at sites, care should

be taken not to interpret the maps as prevalence prediction maps.

For this purpose, the full range of information in the survey data (i.e

age and gender) also known to substantially influence LF

prevalence/infection status, should be taken into consideration.

Hence, a logical next step will be to build on the findings here and

include individual level demographic data in a Bayesian geostatis-

tical prediction model. Such an approach will allow an estimation of

LF prevalence at unsurveyed locations, along with number of

people at risk according to age and gender as done for instance for

LF in Uganda [45], which would be particularly useful for further

improved geographically targeted and cost-effective intervention.
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